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Abstract 

Informatics paradigms for brain and mental health research have seen significant advances in recent years. These 
developments can largely be attributed to the emergence of new technologies such as machine learning, deep 
learning, and artificial intelligence. Data-driven methods have the potential to support mental health care by provid-
ing more precise and personalised approaches to detection, diagnosis, and treatment of depression. In particular, 
precision psychiatry is an emerging field that utilises advanced computational techniques to achieve a more individu-
alised approach to mental health care. This survey provides an overview of the ways in which artificial intelligence 
is currently being used to support precision psychiatry. Advanced algorithms are being used to support all phases 
of the treatment cycle. These systems have the potential to identify individuals suffering from mental health condi-
tions, allowing them to receive the care they need and tailor treatments to individual patients who are mostly to 
benefit. Additionally, unsupervised learning techniques are breaking down existing discrete diagnostic categories and 
highlighting the vast disease heterogeneity observed within depression diagnoses. Artificial intelligence also provides 
the opportunity to shift towards evidence-based treatment prescription, moving away from existing methods based 
on group averages. However, our analysis suggests there are several limitations currently inhibiting the progress of 
data-driven paradigms in care. Significantly, none of the surveyed articles demonstrate empirically improved patient 
outcomes over existing methods. Furthermore, greater consideration needs to be given to uncertainty quantifica-
tion, model validation, constructing interdisciplinary teams of researchers, improved access to diverse data and 
standardised definitions within the field. Empirical validation of computer algorithms via randomised control trials 
which demonstrate measurable improvement to patient outcomes are the next step in progressing models to clinical 
implementation.
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1  Introduction
Conditions associated with poor mental health place a 
significant burden on the Australian health care system. 
Some evidence [1, 2] suggests despite government invest-
ment, availability of inpatient mental health services 
sits below the level of demand. Additionally, demand 
for mental health services is expected to grow further 
as the psychological effects of the Coronavirus pan-
demic are felt by the population [3]. To support increases 
in demand, modern algorithms have the potential to 
streamline the diagnosis of mental health conditions and 
support the improved targeting of treatments utilising a 
data-driven paradigm.

Advanced computing techniques including machine 
learning, deep learning and artificial intelligence are well 
positioned to positively contribute to mental health out-
comes of individuals [4]. With these advanced techniques 
comes the potential for precision medicine. The aim of 
precision medicine is to tailor treatments to the individ-
ual patient as opposed to population averages [5]. More 
recently, the notion of precision medicine has opened 
the possibility of personalised mental health care. This 
personalisation is often referred to as precision psychia-
try. Research exploring the ways artificial intelligence, 
machine learning and big data can be used to support 
mental health treatment is growing rapidly. Evidence 
of this growth is demonstrated by Brunn et  al. [6] who 
observed a 250% increase in publications exploring arti-
ficial intelligence and psychiatry between 2015 and 2019 
on PubMed.

Artificial intelligence will be a part of mental health 
care in the future. This notion is widely acknowledged 
by practising psychiatrists [7]. Doraiswamy et  al. [7] 
reported results from a global survey of psychiatrists 
in which most acknowledge artificial intelligence will 
impact the future of their profession. However, clinicians 
vary on the degree of disruption artificial intelligence 
will have on the field. Few psychiatrists believe artificial 
intelligence will be able to “provide empathetic care to 
patients” [7, p. 3]. However, a slim majority believe artifi-
cial intelligence will be able to diagnose or predict patient 
outcomes “better than the average psychiatrist” [7, p. 4]. 
Whilst opinion differs on the level of artificial intelligence 
disruption, most clinicians believe that artificial intelli-
gence will never completely replace mental health profes-
sionals [8, 9].

While artificial intelligence may never replace the per-
sonalised, empathetic care that a psychiatrist can pro-
vide, this paper will detail the data-driven informatics 
approaches positioned to revolutionise the diagnosis, 
detection and treatment of depression.

Pattern recognition is one of the key strengths of 
machine and deep learning algorithms. These techniques 

have shown some promise in identifying generalisable 
patterns amongst patients suffering mental health con-
ditions. For example, Carrillo et  al. [10] demonstrated 
a Gaussian Naive Bayes classifier using transcribed tex-
tual data could successfully categorise healthy controls 
from patients suffering depression with a F1-score of 
0.82. Given the observed difficulty in diagnosing mental 
health conditions, systems with the ability to diagnose 
depression provide some benefit to Psychiatrists. Com-
pared to other domains of medicine, mental health con-
ditions have no objective markers of disease [11]. This 
lack of objective marker is one of several key diagnostic 
challenges in identifying psychopathology [12]. Current 
diagnostic systems are being questioned due to the sig-
nificant heterogeneity of symptoms amongst populations 
diagnosed with the same condition [13]. Unsupervised 
learning techniques are supporting the identification of 
distinct subtypes of depression or potentially new diag-
nosis. Exploring depression heterogeneity, Drysdale et al. 
[11] used an unsupervised learning technique, hierarchi-
cal clustering, to explore functional connectivity amongst 
patients diagnosed with depression. While the major-
ity of research surveyed in this paper utilises supervised 
techniques, unsupervised techniques provide research-
ers with the opportunity to uncover previously unknown 
relationships. The work by Drysdale et al. [11] uncovered 
four distinct biotypes of depression based on fMRI scans. 
Each of these biotypes was shown to respond differently 
to rTMS treatment. Given each subtype responded dif-
ferently to treatments it is possible that each subtype 
represents a unique condition. This work highlights the 
possibility of artificial intelligence systems to support a 
transition to new diagnostic taxonomies.

As well as supporting the detection and diagnosis of 
mental health conditions, modern computing techniques 
offer the potential to personalise treatment prescription. 
Currently, clinicians rely on a trial and error approach to 
find the best antidepressant for a patient [4, 14, 15]. How-
ever, groundbreaking research by Chang et al. [16] dem-
onstrates the potential for psychiatrists to evaluate the 
likely effect of an antidepressant drug before prescribing 
it. Their work shows using an artificial neural network, 
the Antidepressant Response Prediction Network, or 
ARPNet, can reliably predict the effect of an antidepres-
sant prior to treatment. These technologies raise the pos-
sibility of treatment tailored to the patient level.

In its earliest form, artificial intelligence aimed to 
synthetically reproduce human processes [17]. In its 
infancy, symbolic artificial intelligence was the aim of 
such research. The goal of symbolic artificial intelli-
gence work was to “carry out a series of logic-like rea-
soning steps over language like representations” [18, 
p. 17]. However, symbolic artificial intelligence is no 
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longer the predominant area of interest for the major-
ity of artificial intelligence researchers. Instead, pat-
tern recognition through the use of artificial neural 
networks now dominates the field [17]. The seminal 
work of Rosenblatt [19] provides the first example of 
the perceptron, the foundation of much of the current 
work on neural networks. Increasingly, with advances 
in technology, these networks have become larger lead-
ing to the advent of deep learning [20]. The depth, in 
deep learning refers to the number of hidden layers in 
an artificial neural network. However, no agreed-upon 
definition exists to what constitutes a ‘deep’ neural net-
work [20, 21]. Sheu [22] assert a deep neural network 
has a minimum of 3 layers, an input layer, a hidden 
layer and an output layer. However, in general, modern 
researchers require several hidden layers before declar-
ing a network a deep neural network.

In this paper, we will define artificial intelligence as the 
broad field of techniques, encompassing all of machine 
learning, the neural network and deep learning. In turn, 
machine learning will be used to refer to all non-neural 
network techniques, regardless of depth. This will include 
techniques such as linear regression, logistic regression 
and nearest neighbours. Given the ambiguity in the dif-
ference between artificial neural networks and deep 
learning, the terms will be used somewhat interchange-
ably. Additionally, to help the reader navigate this paper 
we have an included a concept map in Fig. 1. This figure 
provides a high-level representation of the data types and 
techniques being used to explore the field of depression 
detection, diagnosis and treatment response prediction.

This paper explores the ways in which modern phe-
nomenons such as machine learning and deep learning 
are contributing to improvements in the detection, diag-
nosis and treatment of mental health condition. As such, 
this article contributes:

•	 An overview of the current data types and methodol-
ogies being used by the research community to pro-
gress the detection, diagnosis and treatment response 
prediction of mental health conditions.

•	 A survey of the modern computational techniques 
used for the detection, diagnosis and treatment 
response prediction of mental health conditions. 
Including software repositories useful for feature 
generation.

•	 A summary of the current methodological and tech-
nical limitations facing the field researching precision 
psychiatry.

•	 Reflection on the current issues facing the field and 
possible solutions to guide future research.

Currently, detection systems are the most widely 
researched areas utilising artificial intelligence to support 
mental health care. Section 2 provides an overview of the 
ways modern computational techniques are shaping the 
detection of mental health conditions. This area of study 
focuses on the design of systems built using multimodal 
data, such as audio, video and text data to detect men-
tal health conditions. Section  2.3 provides a summary 
of the modern systems being used to revolutionise cur-
rent diagnostic systems, including the vast heterogeneity 

Fig. 1  Content map
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within current diagnostic categories. Additionally, Sect. 3 
provides an in-depth overview of one of the more recent 
advances in the literature, treatment response prediction. 
To date, detection models for mental illness have domi-
nated the literature. More recently, using data to predict 
how effective a treatment might be has become an excit-
ing area of research with much potential.

2 � Informatics paradigms and the diagnosis 
and detection of depression

Traditionally the study of psychiatry has relied heavily on 
statistical inference. Inferential statistics are mainly con-
cerned with underlying distributions. Inference “creates 
a mathematical model of the data generation process to 
formalize understanding or test a hypothesis about how 
a system behaves” [23, p. 233]. Where statistical infer-
ence focuses on explaining group differences based on a 
handful of variables. Prediction is instead suited to larger 
variable sets to make predictions around some target 
variable. Machine learning is interested in prediction and 
pattern recognition. Diagnosing a mental health condi-
tion requires recognising common patterns associated 
with a condition to make a prediction at an individual 
level. More recently, advances in computing processing 
power have led to the rise of deep learning models.

2.1 � Machine learning to support the diagnosis 
of depression

Depression detection using machine learning has grown 
quickly, taking advantage of the vast corpus of text gen-
erated by social media. The diagnosis of depression from 
social media data can be understood as a supervised 
learning task where posts are labelled as depression or 
not depression. From the literature surveyed two classes 
of experiments emerge; Research where depression status 
is confirmed by psychometric test or clinical opinion and 
research relying on self-report.

When building depression detection systems variables 
must be preprocessed for model input. Preparing text for 
machine learning is referred to as Natural Language Pro-
cessing (NLP). NLP is the process of converting natural 
language to numerical representations that are computer 
interpretable. Observed processing techniques within the 
literature are the LIWC [24], Affective Norms for Eng-
lish Words [25], LabMT [26], Latent Dirichlet Alloca-
tion [27], n-grams and bag-of-words [28, see Chapter 3]. 
N-grams and bag-of-words are elementary methods 
to numerically represent text, where bag-of-words is a 
simple text representation which counts the frequency 
of each word within a text document [28]. Despite their 
simplicity, the utility of these methods has been shown 
on several occasions [29–33]. More recently, audio and 
visual features have been included with several systems 

utilising processed audio features [34–36] and others 
which combine audio and visual information [37, 38].

Text data have become a staple feature of most depres-
sion detection systems. In pioneering work, De Choud-
hury et  al. [39] attempted to predict depression in 
Twitter users. Similarly, Reece et  al. [31] sought to use 
Twitter content to classify depressed users. Both [31, 39] 
recruited participants via crowdsourcing and validated 
a depression diagnosis using psychological diagnostic 
questionnaire. For example, in both [31, 39] participants 
completed the Center for Epidemiological Studies-
Depression (CES-D; [40]) self-report survey. Results 
from this diagnostic tool were used as the ground truth 
labels between depressed and non-depressed individu-
als. In these examples [31, 39] researchers used surveys 
to attempt to confirm a depression diagnosis, however, 
some works rely on self reported depression status with-
out survey data. De Choudhury et al. [39] developed one 
of the earliest depression diagnosis systems in the litera-
ture. Motivated by the limitations of self-report question-
naires De Choudhury et  al. [39] aimed to construct an 
objective depression measurement. These early text anal-
ysis systems exploring word usage and depression relied 
on dictionary-based text analysis software. These sys-
tems used hard-coded dictionaries of words selected and 
grouped by their psychometric properties. Primarily used 
by clinicians these systems sought to explore differences 
in language use between depressed and non-depressed 
individuals.

The Linguistic Inquiry and Word Count (LIWC; [24]) 
was one of the earliest examples of a text analysis soft-
ware. Before the LIWC, text analysis was generally con-
ducted by human raters, however, this was inefficient, 
costly, and emotionally draining for judges [41]. Fur-
thermore, raters rarely agreed when evaluating the 
same piece of writing [41]. Hence, computational solu-
tions provide a faster and more consistent alternative. 
For depression researchers the LIWC allowed the com-
parison of language usage between depressed and non-
depressed populations. Combining linguistic features, 
such as the LIWC, with Twitter behavioural data, De 
Choudhury et al. [39] showed a support vector machines 
(SVM) classifier could predict a depressive episode up to 
twelve months in advance. Similarly, in the Japanese con-
text Tsugawa et al. [33] combined linguistic features with 
users’ Twitter information to detect depression on Twit-
ter. Along with analysing the sentiment of posts, Tsugawa 
et  al. [33] show understanding the underlying topics of 
tweets to be helpful in distinguishing depression status. 
Combining LDA, a statistical technique used to iden-
tify underlying topics within a passage of text [27], with 
sentiment and twitter data Tsugawa et  al. [33] returned 
an F1-score of 0.46. Both [39, 33] these works used 
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questionnaires to validate depression status. In contrast, 
Hassan et al. [30] used self-reported depression status to 
generate a text corpus. Using SVM and multiple linguis-
tic features, Hassan et al. [30] achieved a F-score of 0.81 
in their depression measurement system. The LabMT 
and ANEW could be broadly described as classes of sen-
timent analysers. These dictionaries associate each word 
with a valence which can be then input into a machine 
learning classifier. The LabMT word list contains 5000 
of the most common words used on popular online plat-
forms such as Twitter [26]. Similarly, The ANEW is a 
dictionary of words and an associated valence [25]. Fur-
thermore, these tools can be manipulated to a research 
problem. For example, Shen et  al. [42], constructed the 
Valence, Arousal and Dominance (VAD) tool from the 
ANEW. Shen et al. [42] assert their VAD tool was useful 
for explaining human emotions within text documents.

Reece et  al. [31] used a random forest classifier to 
detect depression indicators in a Twitter corpus. Similar 
to methods described previously, a depression diagnosis 
was verified using psychological questionnaire. Report-
ing a F1-score of 0.644 Reece et al. [31] assert their work 
offers strong support for a computational method to 
detect depression. Similarly, Islam et  al. [43] found all 
LIWC dimensions fed into a KNN showed promise in 
the detection of depression. Table 1 provides a summary 
of the classification systems identified under the scope 
of this survey. However, this table does not include deep 
learning algorithms or neural networks which are dis-
cussed in Sect. 2.2.

Some detection systems base their ground truth labels 
on the self reported health status of the participant. All of 
Pirina and Çöltekin [44], Islam et al. [43], Tadesse et al. 
[32], Shen et  al. [42] rely on self-report of depression 
status. These works used pattern matching to identify 

depression indicative content, searching for that include 
sentences like, “I have depression.” Depression indicative 
posts are labelled and used as training data for super-
vised learning techniques. Unfortunately, when datasets 
are developed in this manner depression status is never 
assessed by psychologist or questionnaire. As such, 
some mislabeled examples must be expected within the 
dataset [44]. Despite these limitations, large datasets 
allow researcher to uncover algorithms and feature sets 
which can be applied to the detection and diagnosis of 
depression.

The relationship between mental health status and 
speech is well established [45]. While text features focus 
on the content of speech, audio features involve the pro-
cessing of the sound to analyse a variety of measure-
ments. The inclusion of audio features in depression 
detection systems requires signal processing of the audio 
for it to be included in classification models. Several open 
source speech processing repositories exist and are used 
in the literature including COVAREP [46], openSMILE 
[47] to aid in feature extraction. Equivalent tools for pro-
cessing of visual data technologies include measurements 
such as Facial Action Units (FAU) [37, 38]. Where FAU’s 
“objectively describe facial muscle activations” [48, p. 2].

From Table  1, we see distinct performance difference 
depending on how depression status was validated. These 
findings raise concerns around how accurate methods 
relying on self-report actually are. Existing methods fail 
to capture this uncertainty inherent within self-reported 
data. Mental health data is often subjective which makes 
creating establishing ground truth labels more difficult. 
Future work should endeavour to adopt emerging data 
science techniques such as Bayesian Neural Networks 
(BNN) which are currently being explored to account for 
inherent data uncertainty.

Table 1  Detection systems and their features

Researcher Method Features Dataset F1-score

McGinnis et al. [35] Logistic regression and linear SVM Zero crossing rate, Mel frequency cepstral coef-
ficients and the Z-score of the power spectral 
density

McGinnis et al. [35] –

Tadesse et al. [32] SVM LIWC, LDA and Bigram Pirina and Çöltekin [44] 0.91

Islam et al. [43] Coarse KNN LIWC Islam et al. [43] 0.71

Reece et al. [31] Random Forest LIWC, LabMT, ANEW and Unigram Reece et al. [31] 0.61

Hassan et al. [30] SVM N-gram, POS tagger, Sentiment Analyser and 
Negation

Hassan et al. [30] 0.81

Shen et al. [42] Multimodal dictionary learning LIWC, VAD, LDA, word2vec and Twitter behaviour 
data

Shen et al. [42] ~ 0.85

Deshpande and Rao [29] Multinominal Naive Bayes Bag-of-words Deshpande and Rao [29] 0.83

Tsugawa et al. [33] SVM Bag-of-words, LDA, sentiment analysis+user 
specific information

Tsugawa et al. [33] 0.46

De Choudhury et a.l [39] SVM ANEW,LIWC and Twitter behaviour data De Choudhury et al. [39] 0.68
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2.2 � Artificial neural networks and deep learning: 
from hand‑crafted features to text embeddings 
and beyond

To date, the tools described above have shown to be effi-
cacious in the development of depression detection sys-
tem. For machine learning, feature selection is a vital part 
of model building. However, the development of these 
features can be laborious and time consuming [49]. As 
such, recent approaches have sought to automate the 
feature selection process. One of the strengths of deep 
learning algorithms is their ability to learn feature repre-
sentations without the need for lengthy feature selection 
process.

More recently, deep learning has been applied to the 
detection of depression from text, audio and visual fea-
tures. Similar to the machine learning techniques dis-
cussed in Sect.  2.1, deep learning methods are trained 
using labelled examples to discern patterns between 
individuals with and without depression. In contrast to 
traditional machine learning techniques, in general deep 
learning algorithms do not require hand-crafted features. 
Advanced deep learning algorithms that use textual data 
require word embeddings to make text machine readable. 
These embeddings are vector representations of text doc-
uments [28]. Deep learning algorithms use these vector 
representations to then learn features from the provided 
data [49]. Neural word embeddings such as Word2Vec 
[50], Global Vectors for Word Representation [51, GloVE] 
and more recently transformer based architectures such 
as Google’s Bidirectional Encoder Representation from 
Transformers [52, BERT] are becoming far more preva-
lent in depression research for representing text numeri-
cally for deep learning models.

To date, little work has applied deep learning to the 
assessment of psychopathology [53]. There are likely sev-
eral reasons for the delay in adoption of these techniques. 
One of which is concerns around the lack of transparency 
in how deep learning models make their predictions. 
These concerns have led some [54] to argue against the 
use of deep learning models for important health-related 
decisions. Instead preferencing traditional techniques 
which have greater prediction transparency. Despite con-
cerns about model transparency, deep learning models 
have been shown to significantly outperform traditional 
machine learning techniques for the detection of depres-
sion. Cong et al. [49] proposed a system which combined 
XGBoost with an Attentional Bidirectional LSTM (BiL-
STM). Their work was tested on the Reddit Self-Reported 
Depression Dataset (RSDD; [55]). Compared against sev-
eral systems applied to the same dataset (including an 
SVM using LIWC features), the authors [49] reported a 
F1-score of 0.60. Despite its performance, previous sec-
tions have outlined some issues with self report data (see 

Sect. 2.1). While the system design may be useful, a data-
set trained on a self-reported sample may not be applica-
ble in a clinical setting. Rosa et al. [53] developed a deep 
learning approach for the recognition of stressed and 
depressed users. Their work used a dataset constructed 
using 27,308 labelled Facebook messages. The authors 
assert their Convolutional Neural Network (CNN) BiL-
STM-Recurrent Neural Network (RNN) using SoftMax 
recorded the best results for recognising depressed users. 
They [53] reported an F1-score of 0.92 with a precision 
of 0.9 for the recognition of depressed users, significantly 
outperforming a Random Forest and Naive Bayes. How-
ever, it is not clear from their paper how responses were 
labelled or participants recruited. As highlighted in pre-
vious sections how study participants are recruited has a 
huge impact on model performance.

As such, textual data are commonly used data type for 
detection of mental health conditions. Building upon 
the success of text-based systems emerging research 
is utilising multimodal data to detect depression. The 
Distress Analysis Interview Corpus (DAIC; [56]) is a 
database of 621 interviews collected utilising a com-
bination of face to face, teleconference and automated 
agent interview. The dataset includes text, physiologi-
cal data (such as electrocardiogram), voice recordings 
and psychological questionnaire scores. Utilising this 
dataset, Alhanai et  al. [34] combined audio with tran-
scribed transcripts to predict depression categorically 
using a neural network. Their approach trained two 
LSTM models separately, one trained on audio features, 
the other using text features. Each model was trained 
individually, with their own weights and hyperparam-
eter. The outputs of these two separate models were 
then concatenated and passed to another LSTM layer. 
The best performing model reported by Alhanai et  al. 
[34] utilised both text and audio features to report a F1-
score of 0.77. Highlighting the benefits of combining 
multiple data types in model performance.

Chen et al. [57] applied a deep learning approach to 
automate the diagnosis of perinatal depression. Their 
method used WeChat, a popular social media applica-
tion, in the design of their system. Participants were 
recruited from doctors based on their Edinburgh Post-
natal Depression Score (EDPS). Their work [57] was 
built using Long Short Term Memory (LSTM), a type 
of neural network. In this work the authors assert their 
findings match the findings of the EDPS in their sam-
ple however, little evidence is offered to support this 
assertion.

Table  2 provides an overview of the surveyed depres-
sion detection systems which deploy deep learning mod-
els. From this table we see a heavy reliance on text data. 
Recently, we observe a trend away from hand-crafted 
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features towards complex neural word embedding 
models such as those seen in [59, 58, 62]. This mirrors 
a pattern seen in the data science field in general with 
powerful text embedding models becoming the current 
state of the art. Future research should combine interdis-
ciplinary teams to ensure researchers are using the cur-
rent leading data science techniques. The utility of these 
deep learning systems for the recognition of depression 
is quickly growing, however, to date fewer examples exist 
of systems that model depression treatment effect. While 
sophisticated deep learning networks are rapidly being 
utilised in research the lack of transparency of these deep 
neural networks comes with several limitations for their 
use in practice. Deep learning systems although promis-
ing in their detection are unable to justify or explain why 
they classify a study participant a certain way. As such, 
[54] argue so-called ’black box’ models should not be 
used in high stakes fields including healthcare, when a 
model is not human interpretable.

2.3 � Uncovering new diagnostic categories 
with unsupervised learning and data‑driven 
informatics

Current systems of diagnosis in psychiatry rely on diag-
nostic labels constructed through research rather than 
objective measurements of disorder [4]. The problems 
associated with the diagnosis of mental health conditions 
are widely acknowledged in the literature. An observed 
flaw of the diagnosis of mental health conditions is the 
subjectivity on which it relies. Furthermore, the categori-
cal descriptions of psychopathology ignores heterogene-
ity of within group variation for specific conditions. For 
example, Fried and Nesse [65] identified 1030 unique 

symptom profiles amongst 3703 patients diagnosed with 
clinical depression as part of the Sequenced Treatment 
Alternatives to Relieve Depression ( STAR⋆ D) trial. Fried 
and Nesse [65] go on to conclude “dissatisfaction with the 
diagnostic criteria of major depressive disorder might 
be reduced by acknowledging that it is not one coherent 
condition with a single cause” [65, p. 100].

Categorical diagnosis systems treat conditions as 
binary entities. Under a categorical approach disease 
entities or either present or absent [66]. Past research [67, 
68] has sought to use neuroimaging to delineate between 
individuals suffering depression and healthy controls. 
For example, Yang et al. [68] used fMRI to compare dif-
ferences in resting state activations, identifying reduced 
activity in the left dorsolateral prefrontal cortex when 
compared to prefrontal cortex. More recently, Artifi-
cial intelligence has the potential to identify sub groups 
within disease populations through pattern recognition. 
This pattern recognition can be referred to as unsu-
pervised learning. In contrast to the supervised tasks 
surveyed so far, unsupervised algorithms are used to 
“identify inherent groupings within the unlabeled data” 
[69, p. 5]. Thus, unsupervised algorithms can be used 
to identify groupings that transcend existing diagnos-
tic labels [70]. Exemplifying the possibility of new diag-
nostic criteria, Drysdale et  al. [11] utilised hierarchical 
clustering, a type of unsupervised learning to identify 
four sub types of depression. Their method, grouped 
patients based on fMRI connectivity measures. Further 
exploration showed these sub types could be used to pre-
dict treatment response to rTMS. Of note the machine 
learning classifier was better able to predict treatment 
response than a model built using symptoms alone [11]. 

Table 2  Deep learning and neural networks

Researcher Deep learning architecture Feature types Dataset F1-score

Kabir et al. [58] BERT, DistilBERT BERT DEEPTWEET [58]

Ansari et al. [59] LSTM with Attention GLoVE, SenticNet Reddit, CLPsych 2015, eRisk Dataset 0.77

Wani et al. [60] CNN, LSTM Word2Vec, TF-IDF Wani et al. [60] 0.99

Nemesure et al. [61] Stacked ensemble Electronic health records; 
demographic and medical

Nemesure et al. [61] –

Zogan et al. [62] CNN, BiGRU​ BERT Shen et al. [42] 0.91

Wan et al. [63] Hybrid EEGNet Resting state EEG Wan et al. [63] 0.95

Ray et al. [37] BiLSTM Audio, text and visual DIAC [56] –

Rosa et al. [53] CNN, BiLSTM and RNN with SoftMax – Rosa et al. [53] 0.92

Tadesse et al. [32] MLP LIWC, LDA and Bigram Pirina and Çöltekin [44] 0.91

Tasnim and Stroulia [36] DNN Audio AVEC ’17 [64] 0.61

Alhanai et al. [34] LSTM Audio and text DIAC [56] 0.77

Cong et al. [49] XGBoost and attentional-BiLSTM – Yates et al. [55] 0.60

Chen et al. [57] LSTM – Chen et al. [57] –

Yang et al. [38] Deep CNN and DNN Audio and video AVEC ’17 [64] –
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These results offer support for that position that depres-
sion may not be one single disease entity but in fact 
made up of multiple different conditions. More recently, 
Kuai et al. [71] explored a brain computing approach to 
construct and evaluate prediction models using differ-
ent brain states. Kuai et  al. [71] argue a brain mapping 
approach to understanding mental health offers strengths 
over existing strategies as it allows for hypothesis testing 
to validate causal results. Future work using brain com-
puting may in fact be used to verify differences in the 
underlying brain structures of people diagnosed with the 
same condition.

This section has raised the possibility of either dis-
tinct subtypes of depression, or in fact several different 
underlying conditions distinct from depression. What is 
significant from the patients perspective is these different 
depression variants vary in their response to treatment. 
As such, the use of data to support treatment decisions 
in mental health has been an area of significant research. 
As research for personalised medicine has increased 
so to has work exploring the ways in which psychiatric 
treatments can be tailored to the individual. One emerg-
ing area of interest is the use of machine learning algo-
rithms to predict a patient’s response to treatment prior 
to intervention.

3 � Learning systems to predict depression 
treatment response

Patterns of response to treatments for mental health 
conditions are often inconsistent. Conventional research 
aims to find interventions which are successful at the 
group level [4]. However, as highlighted above, recent 
research is now uncovering significant heterogeneity 
of symptoms among patients classified under the same 
diagnostic label. As such, diagnosis alone are not suf-
ficient to inform treatments [70]. The heterogeneity of 
categorical diagnostic systems is reflected in the incon-
sistent response to treatment interventions for patients 
diagnosed with the same condition. Major depressive 
disorder provides an example of the difficulties in pre-
scribing treatments and the inconsistency in treatment 
response and remission rates.

Estimates of remission rates to antidepressant treat-
ments vary from 25 to 33% of patients achieving remis-
sion after their first course of treatment [15, 72–74]. 
However, this does not mean that patients do not go on to 
achieve remission of their disorder. Some estimates sug-
gest 67% of patients go on to achieve remission after tri-
als of multiple antidepressant treatments [15]. Given this, 
a preferred method for assigning treatments would be to 
maximise the likelihood of success. However, currently 
no standardised way exists of prescribing treatments with 

clinicians relying on a trial and error approach to find the 
best [14, 15].

A more desirable option would be to identify likely 
responders to an intervention prior to treatment. Under 
this approach, treatments can be targeted to the individ-
ual patients who are most likely to derive benefit [4]. This 
is the aim of precision psychiatry. Precision psychiatry 
supported by artificial intelligence would allow clinicians 
to move beyond diagnostic categories and make room 
for the individual variability of care [70]. Tailoring treat-
ments to the individual has several benefits. If it is possi-
ble to predict whether a patient will respond to treatment 
before commencing the therapeutic intervention. Hence 
reducing the time spent pursuing likely ineffective treat-
ments. Additionally, time saved reduces both the finan-
cial and psychological burden on patients and health care 
systems [14, 75].

3.1 � rTMS response prediction
Repetitive transcranial magnetic stimulation (rTMS) is 
an evidenced based treatment for depression. However, 
despite a demonstrated clinical benefit when compared 
to a control [76] for some patients rTMS is ineffective. 
Berlim et al. [76] in their meta analysis report a response 
rate to rTMS treatment of ≈ 30% and remission rate of 
≈ 19% . Similarly, Fitzgerald et  al. [77] in their pooled 
sample review observed a response rate of ≈ 46% and 
remission rate of ≈ 30% . According to Koutsouleris et al. 
[78] the variability of response to rTMS is seen as one 
of the main barriers to the widespread adaptation of the 
treatment modality. This section provides an overview of 
the data science techniques used to delineate rTMS treat-
ment responders from non-responders. Focusing on sys-
tems which make predictions on treatment response at 
the level of individual patients. These treatment response 
prediction systems employ supervised learning tech-
niques and utilise several types of predictor variables 
such as neuroimaging (MRI, EEG, fMRI), genetic, phe-
nomenological or a combination of several variable types 
[79].

The works by Fitzgerald et al. [77] highlights a distinctly 
bimodal pattern of response to rTMS treatment. This pat-
tern of response is distinguished by patients who respond 
to the rTMS treatment, and those who see little benefit. 
Using traditional inferential statistical techniques [77] 
note no variable alone could delineate between respond-
ers and non-responders. This limitation of traditional sta-
tistics highlights one strength of artificial intelligence and 
machine learning approaches. Advanced techniques have 
the ability to combine and make treatment recommenda-
tions based on multiple variables. As such, in  situations 
where one variable alone cannot distinguish between a 
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responder and non-responder, combinations of variables 
may have that power. Additionally, these advanced tech-
niques allow for the combination of data from multiple 
sources. More recently, researchers [11, 14, 75, 78, 80–
83] have utilised more sophisticated machine learning 
techniques to distinguish rTMS responders from non-
responders. The works summarised in Table 3, combine 
physiological measurements such as electroencephalo-
gram (EEG) [14, 75, 80–82] and fMRI [11, 83]. Table  4 
provides a brief overview of the common EEG features 
input into the models described in this survey.

Noting the link between working memory and depres-
sion (for example, [87]), Bailey et  al. [80] explored the 
predictive power of working memory related EEG meas-
urements. Models were built combining Montgomery 
Åsberg Depression Rating Scale [88, MADRS] scores, 
performance on a working memory test, reaction times 
and EEG measurements. EEG measurements included 
connectivity, power, and theta gamma coupling meas-
ures. Where connectivity was calculated using weighted 
Phase Lag Index (wPLI; [89]).

Exploring the relationship between connectivity and 
rTMS response, Chen et al. [84] investigated the role of 
connectivity features collected using MRI. In their study, 
Chen et  al. [84] report using functional connectivity 

maps as features as inputs to their SVM regression analy-
sis. Recently, Hopman et al. [85] deployed a linear SVM 
using features collected via fMRI, such as connectiv-
ity features between the subgenual anterior cingulate 
cortex, lateral occipital cortex, superior parietal lobule, 
frontal pole and central opercular cortex. During fivefold 
cross-validation, the authors present a training accuracy 
of ≈ 97% however, on a held out test set, model perfor-
mance drops to an average ≈ 87% with a 95% confidence 
interval from 100% to roughly 70% accuracy. Similarly, a 
SVM model of 30 features the [80] report an F1-score of 
0.93 and a balanced accuracy of 91%. These metrics were 
the mean results of a robust internal validation scheme 
of 200,000 iterations of fivefold cross-validation. Build-
ing upon these initial findings [81] explored the utilised 
linear SVM with resting EEG features collected prior 
to treatment and after 1  week of treatment to predict 
rTMS treatment response for depression. Built using 
54 features the research utilised 5000 trials of fivefold 
cross-validation to achieve a balanced prediction accu-
racy of 86.6%. The 54 features combined measures col-
lected from MADRS questionnaire and quantitative EEG 
signals Alpha Power, Theta Power, Alpha Connectiv-
ity, Theta connectivity, Theta Cordance and Individual-
ised Alpha Peak frequency. Building upon [81, 75] used 

Table 3  rTMS treatment response prediction

Author Condition Features Algorithm

Chen et al. [84] Depression Resting state MRI SVM regression

Hopman et al. [85] Depression Resting state fMRI Linear SVM

Bailey et al. [81] Depression EEG and MADRS Linear SVM

Fan et al. [83] Depression Resting state fMRI Hierarchical regression

Hasanzadeh et al. [14] Depression EEG K-NN

Zandvakili et al. [75] Depression and post-traumatic stress 
disorder

EEG Lasso regression and SVM

Bailey et al. [80] Depression EEG Linear SVM

Koutsouleris et al. [78] Schizophrenia – Linear SVM

Drysdale et al. [11] Depression fMRI Hierarchical clustering and SVM

Rostami et al. [86] Unipolar and bipolar depression Clinical and demographic Binary logistic regression

Erguzel et al. [82] Depression EEG Artificial neural network

Table 4  EEG feature summary

Feature Description

Cordance The sum of z-transformed absolute and relative power for a frequency band [90]

Coherence Coherence is a measure of correlation between signals [91, 92]. Contextualised, coherence is operation-
alised as a measure of functional connectivity between brain regions [75].

Power A measure of the activity in a frequency band [92]

Theta gamma coupling Research [93] has shown a relationship between theta gamma coupling and deficits in working memory

Weighted Lag Phase Index (wPLI; [89]) A measure of functional connectivity
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machine learning to predict response to rTMS of depres-
sion sufferers with comorbid post-traumatic stress dis-
order (PTSD). However, in contrast to Bailey et al. [81], 
Zandvakili et  al. [75] utilised lasso regression to model 
treatment prediction. Alpha EEG signal coherence was 
used to build the lasso prediction model. Coherence is 
a measure of correlation between signals [91, 92]. Con-
textualised, coherence is operationalised as a measure of 
functional connectivity between brain regions [75]. Uti-
lising a regression model the model outputs predicted 
percentage reductions in scores on the Post-Traumatic 
Stress Disorder Checklist-5 (PCL-5; [94]) and Inventory 
of Depressive Symptomatology-Self-Report (IDS-SR; 
[95, 96]). Reductions of greater than 50% are classified 
as a clinical response. Continuous predictions of ques-
tionnaire score reduction are then converted to clas-
sifications. For example, a model that predicts a 60% 
reduction in IDS-SR for an actual reduction of 65% is the 
correct. While Zandvakili et  al. [75] report an impres-
sive AUC of 0.83 utilising Alpha coherence to predict 
IDS-SR response and AUC of 0.69 for PCL-5 response 
classification. These results must be interpreted in the 
context of high sensitivity (approx. 100%) and low speci-
ficity (approx. 50%) suggesting a large number of false 
positives.

Continuing with the use of pretreatment EEG features 
[14] sought to predict treatment response to rTMS. 
Where response was defined as a reduction of Hamil-
ton Rating Scale for Depression (HRSD; [97]) or Beck 
Depression Inventory (BDI; [98]) by over 50%. Their 
sample included 46 patients with a balanced sample of 
responders and non-responders. The model utilised 
K-NN built on EEG features with the best single feature 
model built using the Power of beta. This model achieved 
a classification accuracy of 91.3% when using leave one 
out cross-validation. The best performing of the multi-
feature models included the Power measurements of all 
bands (Delta, Theta, Alpha, Beta) accuracy remained at 
the level as the model built using only the power of Beta. 
However, the model utilising all power features did differ 
in terms of specificity and sensitivity. Hasanzadeh et  al. 
[14] claim their system built using only pretreatment 
EEG features offers a better alternative to systems requir-
ing multiple measurements.

To our knowledge [82] provides the only example of 
a deep learning algorithm for the prediction of rTMS 
responders. Erguzel et  al. [82] explored the possibility 
of quantitative EEG to predict treatment response using 
an artificial neural network. The main predictive model 
utilised Quantitative EEG (QEEG) cordance as the main 
predictive feature, this is consistent with Bailey et  al. 
[81] who offer some support for the use of cordance as 
an input feature. Further evidence [99, 100] suggests 

theta cordance for the discrimination between treatment 
responders and non-responders. The majority of sur-
veyed papers relying on EEG use hand-crafted features 
consisting of existing signal processing techniques. How-
ever, more recently [63], showed through a novel deep 
learning CNN, EEG data can be processed directly by a 
deep learning architecture. This provides an opportunity 
for future researchers to streamline the data pipeline by 
inputting EEG data directly into networks.

The literature so far has highlighted the value of rTMS 
treatment for at a minimum a subset of the population 
experiencing depression. Additionally, emerging evi-
dence exists to support the use of rTMS for the treat-
ment of schizophrenia [101, 102]. Koutsouleris et al. [78] 
utilised linear SVM to predict treatment response for 
schizophrenia to rTMS treatment. Utilising structural 
MRI they utilised principal component analysis to reduce 
image features to approximately 25 principal compo-
nents. According to Koutsouleris et al. [78] response was 
defined using the positive and negative syndrome scale 
(PANSS; [103]). In contrast to depression, schizophre-
nia is characterised by both positive symptoms including 
hallucinations and delusions as well as negative symp-
toms such as social withdrawal [104]. As such, response 
to treatments for schizophrenia is defined as a greater 
than 20% increase in the positive symptoms sub-scale 
(PANSS-PS) or greater than 20% increase in the nega-
tive symptom sub-scale (PANSS-NS). Hence, response 
to treatment is classified in terms of response for positive 
symptoms or negative symptoms. In the active treatment 
condition a cross validated model produced a balanced 
accuracy of 85% between responders and non-respond-
ers. Consistent with expectation and findings observed 
by Tian et  al. [105] when utilising a leave-one-site-out 
validation protocol was utilised balanced accuracy 
dropped to 71%. Koutsouleris et  al. [78] provides evi-
dence for machine learning algorithms utility irrespective 
of condition. With enough data, advanced computing 
techniques have the potential to support improvements 
across multiple conditions in psychiatry.

To that end, prediction of responders at the single 
patient level has become of interest to the research com-
munity. The surveyed papers show EEG features to be 
the most common neuroimaging feature [14, 75, 80−82], 
with a recent trend towards fMRI and MRI features [83–
85]. EEG measurements of interest include connectivity, 
measured using coherence or wPLI, along with power 
and cordance. Additional features include depression 
rating surveys such as MADRS [81]. These observations 
are consistent with Lee et al. [79] who explored the use 
of machine learning algorithms to predict treatment 
outcomes for patients with either depression or bipo-
lar depression. In the current work SVM was the most 
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widely used algorithm to delineate between treatment 
responders and non-responders of rTMS treatments. 
Several studies report exceptional predictive perfor-
mance (for example, [80]) for their models, however, the 
studies surveyed rely almost exclusively on cross-val-
idation, an internal validation strategy. Of note [14, 78] 
included some pseudo-external validation in the form of 
a leave one group out validation. In their multi-site sam-
ple, validation involved holding one site out from training 
for model evaluation. Interestingly, performance of this 
model dropped significantly when tested on a site not 
included in the training set. Future opportunities exist for 
the streamlining of techniques to preprocess data such as 
EEG, MRI and fMRI for input into deep learning models. 
Future work may see networks which automate this pre-
processing reducing the need for hand-crafted features.

3.2 � Pharmacological intervention response prediction
Currently, robust biomarkers or objective measurements 
of psychiatric conditions do not exist. However, several 
studies have identified neuroimaging techniques as “can-
didates of prognostic biomarkers in major depression 
disorder” [72, p. 2]. Seminal work by Khodayari-Ros-
tamabad et  al. [15] provides an early example of treat-
ment response prediction for antidepressants. Their 
system utilised pretreatment EEG features combined 
with a mixed feature analysis [106]-based classifier to 
predict treatment response prediction. More recently, 
Jaworska et  al. [72] explored the efficacy of several 
machine learning classifiers for the prediction of treat-
ment response of antidepressants. The work explored, 
random forests, Adaboost, SVM, classification and 
regression trees (CART) and the multilayer perceptron 
(MLP). The best performing model reported by Jaworska 
et al. [72] was a random forest classifier which combined 
117 features from a variety of sources including eLO-
RETA, EEG and clinical features. The model recorded an 
F1-score of 0.901. Despite this impressive performance, 
models built with large numbers of features are vulner-
able to overfitting [107]. Given the problem of overfitting, 
the more suitable model presented by Jaworska et al. [72] 
is built using twelve predictive features selected based 
using extremely randomised trees. This method ranks 
the predictive power of features using the average impu-
rity score. Of models built using only twelve features, 
[72] report random forest to have the best prediction 
performance with an F1-score of 0.827 slightly outper-
forming Adaboost with an F1-score of 0.815. Similar to 
the findings of Drysdale et  al. [11], Jaworska et  al. [72] 
assert models built on features incorporating imaging 
techniques outperformed models built solely on clini-
cal or demographic data. This assertion suggests models 

neuroimaging techniques to be a more reliable measure 
of psychiatric health.

While imaging, clinical and demographic features are 
the predominant features of interest, pioneering works 
[16, 109, 110] have included genetic features, such as sin-
gle nucleotide polymorphisms (SNP). Pei et al. [109] col-
lected SNP’s via a blood sample where the significance of 
each allele was determined using logistic regression. The 
outcome variable of interest was treatment response vs 
non-response. Continuing with the theme of algorith-
mic feature set selection, Pei et  al. [109] utilised SVM 
recursive feature elimination. Linear SVM was used in an 
ensemble approach outperforming single classifiers built 
using the same predictor variables. This result is consist-
ent with the literature that emphasises the strength of 
ensemble methods for classification tasks in supervised 
learning [114]. Similarly, Lin et al. [110] explored the pre-
dictive power of SNPs utilising the deep learning algo-
rithm, multilayer feedforward neural networks (MFFN). 
The work explored the performance capability of the 
MFFN compared to logistic regression with a feature 
set of 16 biomarkers and six clinical features to predict 
both treatment response and remission. For a set of 16 
features, the MFFN with up to three hidden layers out-
performed logistic regression in both AUC and sensitiv-
ity, however, logistic regression achieved slightly better 
specificity. When the number of features was lowered 
to six biomarkers, similar to Jaworska et al. [72] perfor-
mance declined as the number of features dropped. For 
6 features, the best AUC score dropped to an AUC of 
0.5597 for a single-layer MFFN with the logistic regres-
sion achieving higher specificity.

Also utilising a deep learning for the prediction of 
treatment response, Chang et  al. [16] developed a neu-
ral network based system, the Antidepressant Response 
Prediction Network (ARPNet), to predict both the degree 
of treatment response, as a continuous variable, and 
whether a patient reaches clinical remission. In contrast 
to other studies (see [72, 109]), Chang et  al. [16] define 
clinical remission as a greater than 50% reduction in 
HAM-D score; whereas [110] defined remission as a 
HDRS score of less than 7. These differences in defini-
tions are significant. As the field strives for clinical use of 
artificial intelligence systems a standardisation of defini-
tions would be helpful for comparing models. Despite 
terminology differences, Chang et  al. [16] present a 
robust system to predict response with their model sig-
nificantly outperforming other widely used classifiers 
such as linear regression. Similar to Pei et  al. [109], Lin 
et al. [110], ARPnet includes genetic variables and com-
bines this information with neuroimaging biomark-
ers. The system utilises elastic net feature selection with 



Page 12 of 19Squires et al. Brain Informatics           (2023) 10:10 

hyper parameter tuning conducted using fivefold cross-
validation with a test set of 10%. Two features unique 
to ARPnet is the antidepressent prescription layer of 
the neural network and the use of ARPnet to predict 
the degree of treatment response, measured in terms of 
HAM-D score across time. This novel approach would 
allow psychiatrists to model the likely response of an 
antidepressant before prescribing it [16].

While text features were widely used for the detec-
tion of depression (see Sect. 2), the use of these features 
is uncommon in treatment response prediction. Carrillo 
et al. [10], in a unique method present text analysis as a 
method for predicting the treatment response to psilo-
cybin. Given, the established relationship between psy-
chological health and language use [115–119], Carrillo 
et al. [10] first show that a Gaussian Naive Bayes classi-
fier could distinguish between individuals suffering from 
depression, and healthy controls. Their model was built 
using features constructed by sentiment analysis col-
lected via interview. Additionally, this Gaussian system 
able to distinguish responders from non-responders at a 
level of significance when compared to permutation test-
ing. However, this research is significantly limited by the 
small sample size of only 17 study participants compris-
ing 7 responders and 10 non-responders.

So far this section has explored a variety of data sources 
used as features for systems that predict treatment 
response. With the most common physiological feature 
being EEG. An additional and emerging data type is the 
use of fMRI neuroimaging [11, 83, 105]. Tian et al. [105] 
explored resting fMRI features as predictors of escitalo-
pram response in patients suffering depression. The work 
explored the predictive power of fMRI features across 
three sites. Using data of 34 patients from Nanjing Brain 
Hospital across a 7-year period [105] used an SVM clas-
sifier to deliver an optimal accuracy of 79.41%. Using per-
mutation test as comparison the authors [105] conclude 
this result to be significant at the p < 0.001 level. Using the 
minimum redundancy maximum relevancy the authors 
identified 7–8 features which combined to produce 
the optimal classifier. Similar to Hasanzadeh et  al. [14], 
Koutsouleris et al. [78], as Tian et al. [105] was a multi-
site trial, a leave one group/site out analysis was used as 
a validation technique. Using one site as the hold out set 
for more thorough validation which tests model generali-
sation. For Tian et al. [105] a leave one group out analysis 
showed performance decrease. This leave one group out 
protocol achieved accuracy of between 69 and 71% com-
pared to the 79.41% when data were trained and tested at 
a single site. This performance drop highlights the com-
mon limitation of machine learning, model generalisation 
to unseen data. Similar performance decline is observed 
by Browning et al. [108] who provide one of few examples 

of external validation on an independent dataset. Explor-
ing the possibility of baseline Quick Inventory of Depres-
sion Severity (QUIDS; [120]) and the face-based emotion 
recognition task (FERT). Browning et al. [108] observed 
performance decline from approximately 80% accuracy 
to 60% accuracy on the independent dataset. Similarly, 
Chekroud et  al. [112] using gradient boosting machines 
achieved an accuracy score 64.6% during cross-validation 
compared to an accuracy of 59.6% on an external data 
a performance drop not in the magnitude of Browning 
et  al. [108]. The difference in relative performance drop 
could be due to the low accuracy reported in the internal 
validation stage by Chekroud et  al. [112]. Performance 
comparisons between Browning et  al. [108] and Chek-
roud et al. [112] are further complicated by their different 
target variables. Browning et al. [108] sought to identify 
patients who achieved a response to treatment, defined 
by a greater than 50% reduction in QIDS-SR, in contrast, 
Chekroud et  al. [112] sort to identify clinical remission 
defined by the QIDS-SR as a final score less than or equal 
to five.

Several algorithms have been trialled for the prediction 
of treatment response to pharmacological treatments of 
depression. A summary of these techniques can be found 
in Table 5. These algorithms include deep learning tech-
niques such as MFFN [72] and customised neural net-
based systems such as those in Chang et al. [16]. Other 
commonly utilised algorithms include Linear SVM [109, 
105], tree-based methods [72, 113] and logistic regres-
sion [111].

While the majority of studies discussed in this section 
report impressive results, they are significantly limited by 
small samples (see Table  6) and lack of external valida-
tion. Commonly, internal validation techniques such as 
k-fold cross-validation and leave-one-out cross-valida-
tion. And others [110, 111] employed repeated cross-val-
idation, the most robust form of internal validation [121]. 
We observed significant performance drops when data 
were spread across multiple sites or models tested on 
independent data. This performance decline highlights 
the issue of generalisation in machine learning, one of the 
key barriers to clinical adoption of these techniques [5, 
122].

We also note the recent shift towards more sophisti-
cated deep learning techniques, with Tian et  al. [105] 
claiming their MFFN to outperform a logistic regression, 
[16] reporting their neural net-based system to outper-
form common strategies such as SVM and random for-
ests. The majority of response prediction studies agreed 
to a common definition of response as a greater than 50% 
reduction in score from a psychometric questionnaire 
used to asses depression severity, with instrument of 
choice varying across samples. Notably, only Chang et al. 
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[16] differed in their definition responder, defining clini-
cal remission as a 50% reduction in HAM-D score.

As artificial intelligence becomes more prevalent in 
medicine and psychiatry a more standardised framework 
is required for the testing and validation of deep learning 
models. Differences in definitions between models make 
comparison between systems more difficult. As such reg-
ulators and the research community should endeavour 
to standardise definitions; This standardisation would 
first make the regulation of artificial intelligence systems 
easier and secondly make communication of model per-
formance more transparent.

4 � Discussion: challenges and opportunities
Advances in deep learning, machine learning and natural 
language processing are slowly being applied to the field 
of precision psychiatry. This paper serves as a guide for 
psychiatrists and data science practitioners alike as to the 

existing state-of-the-art techniques and the open prob-
lems which require further work.

Supporting a shift towards precision psychiatry artifi-
cial intelligence provides the opportunity for treatment 
response prediction. Treatment response prediction pro-
vides empirical evidence for the likely effect of an inter-
vention. Currently, clinicians rely on trial and error to 
find the best antidepressant for a patient [4, 14, 15]. As 
such, treatment response prediction offers a shift from 
trial and error treatment prescription to evidence-based 
treatment recommendations supported by data. The 
surveyed works explore two categories: single patient 
response prediction for rTMS and pharmacological 
interventions. These systems utilise any of neuroimag-
ing, demographic and clinical features [79]. Jaworska 
et al. [72] observed neuroimaging features outperformed 
clinical and demographic features. This is consistent with 
Drysdale et al. [11] reports “clinical symptoms alone were 
not strong predictors of rTMS treatment responsive-
ness at an individual level” [11, p. 8]. Systems built using 
neuroimaging techniques consistently demonstrated the 
ability to delineate between treatment responders and 
non-responders for both rTMS and drug-based treat-
ments. However, for these systems to be adopted in a 
clinical setting several limitations must be addressed.

4.1 � Challenges and limitations
Through our survey of the literature, we identified some 
consistent themes for consideration by the research 
community. The studies reviewed so far report impres-
sive results for the detection, diagnosis and treatment 
response prediction. Despite impressive results reported 

Table 5  Pharmacological treatment response prediction

Author Features Algorithm Validation

Jaworska et al. [72] EEG and eLORETA Random forests Tenfold cross-validation

Browning et al. [108] Initial QIDS-R and face-based 
emotional recognition task 
(FERT)

Linear SVM External validation on unseen data

Pei et al. [109] EEG and genetic markers Linear SVM Leave-one-out cross-validation

Chang et al. [16] MRI and genetic markers Artificial neural network Holdout set and k-fold cross-validation 
for hyperparamater tuning

Tian et al. [105] fMRI Linear support vector machine Leave-one-out cross-validation

Carrillo et al. [10] Speech data Gaussian Naive Bayes Sevenfold cross-validation

Lin et al. [110] Genetic markers Multilayer feedforward neural network 10 iterations of tenfold cross-validation

Mumtaz et al. [111] EEG Logistic regression 100 iterations of tenfold cross-validation

Chekroud et al. [112] Sociodemographic, question-
naires (such as HAMD), clinical 
information

Gradient boosting machine 10 iterations of tenfold cross-validation 
and externally validated on unseen data

Patel et al. [113] Demographic and neuroimaging Alternating decision trees Leave-one-out cross-validation

Khodayari-Rostamabad et al. [15] Pretreatment EEG Mixture of factor analysis 100 iterations of leave N out cross-
validation

Table 6  Pharmacological treatment response sample summary

Author Sample size Definition of response

Jaworska et al. [72] 51 > 50% reduction in MADRS score

Pei et al. [109] 98 > 50% reduction in HDRS 6

Lin et al. [110] 421 –

Chang et al. [16] 121 Remission defined as > 50% 
reduction in HAM-D

Carrillo et al. [10] 17 > 50% reduction in QIDS

Mumtaz et al. [111] 34 > 50% reduction in BDI-II

Khodayari-Rostama-
bad et al. [15]

22 > 30% reduction in HAM-D
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above, none of the works surveyed as yet have been 
shown to demonstrate improved treatment outcomes 
for patients. Given the field of personalised psychiatry is 
not new, with surveyed works spanning a decade. Further 
collaboration between mental health professionals and 
data scientists to ensure this research is being converted 
into improved patient outcomes. This section explores 
the limitations of existing systems which reduces the pos-
sibility of real world application.

4.1.1 � Model validation: the need for external validation
Several of the surveyed studies described in previous sec-
tions report impressive power for predicting treatment 
response with several performing above current stand-
ards observed in practice. However, several issues exist 
in moving these research systems to clinical practice. 
Of the papers reviewed above the most obvious limita-
tion, or barrier to implementation is the issue of model 
validation.

Of the surveyed articles two studies include multiple 
sites [78, 105] and two test their models on independent 
data [108, 112]. Rigorous validation is crucial if machine 
learning systems are to effectively transition to industry 
use [122]. The majority of papers cited above use some 
form of internal validation such as k-fold cross-valida-
tion. Widely cited work by Harrell Jr [121] provides a 
hierarchy of validation techniques used to predict model 
performance on new data. Using this hierarchy validation 
techniques range in effectiveness from only reporting the 
best performing iteration of model performance, to the 
most powerful validation technique, external validation 
by an independent research team on new data. Harrell 
Jr [121] asserts the strongest of internal validation tech-
niques is repeated iterations of k-fold cross-validation. 
Model validation is of significant importance in the tran-
sition of predictive models. Fröhlich et  al. [5] notes the 
path to implementation for predicative artificial intel-
ligence models must include robust internal validation, 
external validation on independent data and empirical 
validation as part of a clinical trial.

These views are supported by Browning et al. [108] who 
contend randomised control trials are necessary to vali-
date model performance to a level that would justify clin-
ical adoption. Of the papers surveyed to date few tested 
their models on independent data and none included 
randomised control trials of their systems. With the lack 
of publicly accessible data for depression, external valida-
tion of model performance is challenging. Open datasets 
would enable researchers to build their models on one 
dataset and compare performance across samples. This 
realisation is already being realised by datasets such as 
ADNI, providing an established research pipeline for the 

study of Alzheimer’s. Providing researchers with datasets 
for external validation.

4.1.2 � Small sample sizes and greater data access
The issue of access to data and sample sizes provides a 
brief overview of progress in the respective dimensions 
covered in this review. Data relating to depression detec-
tion are widely available compared to data for treatment 
response prediction. For example, social media text, 
DIAC [56] and AVEC [64] are widely accessible. Access 
to data provides computer scientists and researchers 
the opportunity to compare their systems on the same 
datasets. In contrast, researchers exploring treatment 
response prediction at the single patient level are limited 
by small samples and challenges accessing data. A cen-
tralised cloud-based repository of mental health data as 
proposed by Chen et al. [123] offers one potential solu-
tion, however, would be require significant infrastructure 
to implement.

Treatment response prediction relies more heavily on 
neuroimaging data. Labelled examples for treatment 
response prediction are far less available with the sur-
veyed articles relying on small samples. Table 6 provides 
an overview of the sample sizes used to generate the 
results discussed in this paper. Consistent with trends 
identified in Arbabshirani et al. [124], with the exception 
of [110] the majority of studies surveyed have samples 
under 150. Arbabshirani et  al. [124] assert it is difficult 
to generalise results from small samples to the broader 
patient population. Furthermore, it is likely small samples 
overstate the predictive power of a system [125]. Button 
et al. [126] assert low statistical power as a result of small 
sample sizes is a problem of endemic proportions within 
the field of neuroscience. Combined, with observed pub-
lication bias of artificial intelligence systems [125] it is 
likely the published literature provides only a theoretical 
upper limit of the current effectiveness of artificial intel-
ligence systems for precision psychiatry. Furthermore, 
small sample sizes do increase the probability of overfit-
ting [4], leaving researchers to overstate the performance 
of their model.

For the continued growth of personalised psychiatry 
research larger datasets become more accessible. The 
dearth of open datasets is especially true for the study 
of depression. With the benefits of open data sharing is 
exemplified by the success garnered from the Alzheimer’s 
Disease Neuroimaging Initiative. Recently, Birkenbihl 
et al. [122] report the ADNI dataset has now been refer-
enced more than 1300 times. To date there is no equiva-
lent data repository for conditions such as depression. 
Possible large cloud based solution such as that proposed 
by Chen et al. [123] may pave the way forward, however, 
further work is required.
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4.2 � Future trends and opportunities
The last decade of research has seen rapid advancements 
in the technologies being used to support mental health 
care. For the detection and diagnosis of depression we 
observe a trend away from machine learning algorithms 
to sophisticated deep learning architectures. Similarly, 
text classification is moving away from traditional text 
mining features such as n-grams and bag-of-words to 
more sophisticated transformer-based embeddings such 
as BERT. However, the transition to deep learning archi-
tectures is less evident in treatment response predic-
tion. Despite using quantitative data like EEG, fMRI or 
MRI, this field is relying on existing technologies such as 
SVM. Few methods exist where raw neuroimaging data, 
such as EEG is passed directly to Deep Learning Algo-
rithms. Thus an opportunity exists for the use of deep 
learning methods to learn feature representations for 
the treatment response prediction and streamline data 
preparation.

4.2.1 � Causal artificial intelligence
Existing trends in this survey show a move from hypoth-
esis testing, to pattern recognition using artificial intelli-
gence techniques. However, predictive techniques do not 
establish causality as hypothesis and randomised con-
trol trials did. While some confuse pattern recognition 
for causality, Sgaier et al. [127] asserts “Relying solely on 
predictive models of AI in areas as diverse as health care, 
justice, and agriculture risks devastating consequences 
when correlations are mistaken for causation.”

Establishing causation using artificial intelligence 
would be a significant breakthrough in depression 
research and precision psychiatry alike. In some medical 
fields we are starting to see early attempts at establishing 
causality with the use of deep learning. Wang et al. [128] 
show their model DeepCausality was able to identify 20 
causal factors for identifying drug induced liver disease 
from electronic health records. Furthermore, advances in 
brain mapping such as the strategies shown in Kuai et al. 
[71] may allow for the establishment of causal relation-
ships between changes in brain activity and depression 
severity

4.2.2 � New technologies and automating data pipelines
Recent advances in text embeddings such as BERT, 
GloVe or Word2Vec are more often being utilised by 
practitioners to prepare text for depression detection. 
The use of these transformer-based word embeddings 
have led to more streamlined data pipelines. Further 
opportunities exist for data scientists to develop new 
techniques to process neuroimaging data directly such 
as the approach proposed by Wan et  al. [63]. CNNs 

are well equipped to handle sequence data and feature 
work may allow for networks equipped to handle neu-
roimaging data without prepossessing.

To date, the detection and diagnosis of mental health 
conditions relies on self-report or clinician-adminis-
tered questionnaires. Currently, objective biomarkers 
of psychopathology do not exist [11]. Given this chal-
lenge, significant research has explored the possibility 
of depression detection using text, audio and visual. 
Currently, evidence [37] suggests the content of speech 
is the best predictor when compared to audio and vis-
ual to delineate between people who are healthy and 
individuals suffering mental health conditions. Sys-
tems designed for depression detection utilise a variety 
of techniques progressing from elementary machine 
learning methods to more sophisticated techniques 
such as deep learning algorithms. Depression detection 
is the most widely researched area explored within the 
scope of this survey. This advancement has been driven 
by the access to significant bodies of text and publicly 
accessible datasets such as DIAC [56] and AVEC [64].

4.2.3 � Uncertainty quantification
As the field strives for clinical implementation of the 
artificial intelligence systems surveyed further work 
is required to capture the uncertainty associated with 
model building. This includes the two types of uncer-
tainty, data uncertainty (aleatoric uncertainty), and 
epistemic uncertainty, (model uncertainty). The aleato-
ric uncertainty can be seen in the variations in depres-
sion detection system performance depending on how 
ground truth labels were collected. We noted perfor-
mance drop off when self-report measures were used 
as ground truth labels. The use of self-report measures 
encompasses some inherent uncertainty which existing 
methods fail to capture. Additionally, if these models 
are to become prevalent in their use in informing treat-
ment decisions, these models must be able to express 
their prediction confidence, which currently is not 
included in model outputs. Bayesian Neural Networks 
are an emerging technology to encompass both data 
uncertainty and express prediction confidence. Fur-
ther to this, more work is required to ensure as models 
become more complex effort is made to understand the 
inner workings of these models. Some concerns exist 
regarding the lack of transparency in how deep learning 
models make their predictions. These concerns have 
led some [54] to argue against the use of deep learning 
models for important health-related decisions. Accu-
rate predictive models which are interpretable are of 
significant interest to the research community.
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5 � Conclusions
Much excitement surrounds the potential for artificial 
intelligence and machine learning to revolutionise psy-
chiatry. This paper provides an overview of the tech-
niques and methodologies available to researchers for the 
detection, diagnosis and treatment of depression. Whilst 
every endeavour has been made to ensure the complete-
ness of this survey paper given the speed of progress 
within the data science community we cannot guarantee 
all papers within the literature have been included. How-
ever, this paper aims to provide an up-to-date assessment 
of the current position of artificial intelligence’s use in the 
field of psychiatry.

The last decade of research has seen rapid advance-
ments in the technologies being used to support mental 
health care. For the detection and diagnosis of depression 
we observe a trend away from machine learning algo-
rithms to sophisticated deep learning architectures. Simi-
larly, text classification is moving away from traditional 
text mining features such as n-grams and bag-of-words to 
more sophisticated transformer-based embeddings such 
as BERT. However, the transition to deep learning archi-
tectures is less evident in treatment response prediction. 
Despite using quantitative data like EEG, fMRI or MRI, 
this field is relying on existing technologies such as SVM. 
Few methods exist where raw neuroimaging data, such as 
EEG is passed directly to deep learning algorithms. Thus 
an opportunity exists for the use of deep learning meth-
ods to learn feature representations directly and stream-
line the treatment response prediction process.

Current limitations of treatment response systems 
include small sample sizes and model validation. The 
small samples observed in the treatment response pre-
diction systems described in Sect.  3 make it difficult to 
generalise findings to the broader population [124]. 
Additionally, small sample sizes increase the likelihood 
of model overfitting [4]. Larger, more publicly acces-
sible datasets such as the data pipelines that are well 
established for the study of Alzheimer’s disease (see 
[122])  would address this issue. Further barriers to the 
widespread adoption of these systems is the issue of 
model validation. As noted by Fröhlich et al. [5] the path 
to implementation for predicative artificial intelligence 
models includes robust internal validation, external vali-
dation and empirical validation as part of a clinical trial. 
Of the works included within the scope of this review 
the majority includes only internal validation, falling well 
below the standard for implementation. To advance the 
field of personalised psychiatry to the clinic, future work 
should seek larger datasets and explore empirical valida-
tion in the form of randomised control trials. We suggest 
greater collaboration between healthcare professionals 
and artificial intelligence researchers may speed up the 

process of adoption and ensure state-of-the-art tech-
niques are being used to improve health outcomes.
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